Stochastic resonance during a polymer translocation process
نویسندگان
چکیده
منابع مشابه
Stochastic resonance during a polymer translocation process.
We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and...
متن کاملPolymer translocation through a nanopore
We investigate the dynamics of polymer translocation through a nanopore under an externally applied field using the 2D fluctuating bond model with single-segment Monte Carlo moves. We concentrate on the influence of the field strength E, length of the chain N, and length of the pore L on forced translocation. As our main result, we find a crossover scaling for the translocation time τ with the ...
متن کاملPolymer translocation in a double-force arrangement.
Using Langevin dynamics simulations, we investigate the translocation dynamics of an externally driven polymer chain through a nanopore, where a pulling force F is exerted on the first monomer whilst there is an opposing force F(E) < F within the pore. Such a double-force arrangement has been proposed recently to allow better dynamical control of the translocation process in order to sequence b...
متن کاملPolymer translocation through a long nanopore
Polymer translocation through a nanopore in a membrane is investigated theoretically. Recent experiments on voltage-driven DNA and RNA translocations through a nanopore indicate that the size and geometry of the pore are important factors in polymer dynamics. A theoretical approach is presented which explicitly takes into account the effect of the nanopore length and diameter for polymer motion...
متن کاملPolymer translocation through a nanopore: DPD study.
Translocation of a polymer chain through a narrow pore is explored using 3D explicit solvent dissipative particle dynamics simulation. We study the dependence of the translocation dynamics and translocation time τ on the chain length N, driving force magnitude E, and solvent quality. Two types of driving forces are considered: uniform hydrostatic force, which is applied equally to the chain and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2016
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4945559